Journal of Organometallic Chemistry, 91 (1975) C13-C16
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

DERIVATIVES OF THE closo-Ru₄C₂ CLUSTER

BRIAN F.G. JOHNSON, JACK LEWIS and KARL T. SCHORPP University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received March 3rd, 1975)

Summary

The reaction of $Ru_3(CO)_{12}$ with $RC\equiv CR'$ yields closo- $Ru_4(CO)_{12}$ ($RC\equiv CR'$), which reacts with additional alkyne, $PhC\equiv CR''$, to yield $Ru_4(CO)_{11}(RC\equiv CR')$ -($PhC\equiv CR''$).

In previous communications [1,2] we reported the production of organometallic compounds based on closo-Ru₄C₂ units from the reaction of H₄Ru₄(CO)₁₂ and cyclic olefins. Few compounds of this class are known; the only other example, apart from those of ruthenium, being Co₄(CO)₁₀C₂R₂ [3], and in the case of Ru₄(CO)₁₁C₈H₁₀ [4] it has been shown that the Ru₄C₂ skeleton is essentially the same as that of Co₄C₂ found in Co₄(CO)₁₀C₂Et₂ [3]. This paper reports the preparation of several additional compounds based on closo-Ru₄C₂ units which are formed in the reaction of Ru₃(CO)₁₂ with the alkynes RC≡CR' (R = Ph, R' = Ph, Me or Et; R = R' = CH₃OCH₂).

The cluster compounds Ia—Id are readily prepared by direct reaction of the appropriate alkyne with $Ru_3(CO)_{12}$ in refluxing n-hexane under argon, usually in yields in the region of 5-10%. (Various other, as yet uncharacter-

SCHEME 1. THE REACTION OF Ru3(CO)12 WITH THE ALKYNES RC=CR'

$$Ru_{3}(CO)_{12} + RC \equiv CR' \xrightarrow{\text{n-hexane}} \qquad \qquad Ru_{4}(CO)_{11}(RC_{2}R')(PhC_{2}R'')$$

$$Ru_{4}(CO)_{12}(RC_{2}R') \longrightarrow \qquad (IIa) R = R' = Ph, R'' = Me$$

$$(IIb) R = R' = Ph, R'' = Et$$

$$(IIc) R = Ph, R' = Me$$

$$(IIc) R = Ph, R' = Me$$

$$(IIc) R = Ph, R' = R'' = Me$$

$$(IId) R = R' = CH_{3}OCH_{2}$$

$$(IIIa) R = R' = Ph$$

$$(IIIb) R = Ph, R' = Me$$

Table 1
Infrared and mass spectroscopic data for closo-ru_sc, compounds

Compound	IR (in n-pentane) (cm ⁻¹) 2091m, 2065vs, 2041(sh), 2038vs, 2017m, 2010(sh), 1969m	
la		
ľb	2091m, 2064vs, 2039(sh), 2034vs, 2013m, 2003(sh), 1968m	860
(c	2090m, 2062vs, 2040(sh), 2037vs, 2012m, 2003(sh), 1971m	874
Id	2091m, 2063vs, 2037vs, 2012m, 2006(sh), 2003(sh), 1970m	858
Ru ₄ (CO) ₁₂ C ₈ H ₁₀ [2]	2090m, 2061vs, 2038s, 2035s, 2013w (br), 2003m	
Ru ₄ (CO) ₁₂ C ₈ H ₁₂ [2]	2088w, 2059s, 2034s, 2010m, 1996m, 1967w (br)	
Ila	2083vs, 2053vs, 2035s, 2024s, 2017(sh), 1978vs	
IIb	2083vs, 2054vs, 2038(sh), 2034s, 2024s, 2015(sh), 1978s, 1974(sh)	1024
He	2081vs, 2052vs, 2034s, 2024s, 2011s, 1977s	948
Ru ₄ (CO) ₁₁ C ₈ H ₁₀ [2]	2081m, 2046vs, 2029s, 2019m, 2007w, 1999w, 1990w(br), 1966w(br)	

ised, clusters are also obtained.) Separation of these products is relatively easy and is best carried out by thin layer chromatography on silica. Scheme 1 lists the new compounds prepared and some spectroscopic data are collected in Table 1. All complexes are intensely coloured (brown) as observed with other Ru_4C_2 derivatives [1,2] and not yellow as generally observed for clusters based on the Ru_3 unit [1,2].

The formulation of the compounds as derivatives of closo-Ru₄C₂ (Fig.1) is based on mass spectroscopic evidence, supported by the appropriate analytical and infrared spectroscopic data. Thus all complexes exhibit a strong parent ion in their mass spectra (see Table 1) together with ions corresponding to the stepwise loss of the twelve carbonyl groups and fragmentation of the RC≡CR' ligand. An intense peak corresponding to the Ru₄C₂⁺ ion is also observed; an observation consistent with the presence of a closo-Ru₂C₂ unit within the complex. The infrared spectra (Table 1) in the metal carbonyl region (ν(CO)) of complexes Ia-Id are very similar to those of Ru₄(CO)₁₂C₈H₁₀ and Ru₄(CO)₁₂C₈H₁₂ [2]. They do not resemble those of the trinuclear iron compounds Fe₃(CO)₉(RC≡CR') [4]. From their formulae and spectroscopic properties these compounds are obviously similar to those formed from H₄Ru₄(CO)₁₂ and cyclic olefins. The formation of Ru₄ clusters from Ru₃(CO)₁₂ is perhaps unexpected, particularly in view of previous work with Fe₃(CO)₁₂ [5] and Os₃(CO)₁₂ [6] which showed that on reaction with acetylenes these carbonyls gave predominantly trinuclear species. In a recent communication Cetini and his coworkers [7] reported the formation of Ru₃ trimers and dimers

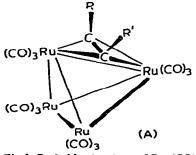


Fig.1. Probable structure of Ru₄(CO)₁₂(RC₂R').

from the reaction of $Ru_3(CO)_{12}$ and diphenylacetylene or tetraphenylcyclopentadienone under conditions similar to those reported here. No mention of tetranuclear Ru_4 derivatives was made.

$$(CO)_{3}RU$$

$$(CO)_{4}RU$$

Fig. 2. Possible structures of Ru₄(CO)₁₁(RC₂R')(PhC₂R").

On allowing complexes Ia or Ib to react with additional alkyne (PhC \equiv CR" in n-hexane) (R" = Me or Et), (see Scheme 1) under argon (reflux 6 h), carbon monoxide is evolved and new complexes based on a Ru₄ cluster unit are produced, which are obtained in yields of 50-60%, after TLC on silica. These new orange complexes are soluble in a wide range of organic solvents. On the basis of their mass spectra, which exhibit strong parent ions, they may be formulated as Ru₄(CO)₁₁(PhC \equiv CR')(PhC \equiv CR"). This formulation is supported by analytical data and their infrared spectra which are similar to those reported for other Ru₄(CO)₁₁ species [2]. Their structures are unknown. Several possibilities are given in Fig.2. At present we have no way of differentiating these possibilities apart from the observation that a peak corresponding to Ru₄C₄⁺ appears in the mass spectrum, which tends to imply that the two acetylenes have combined [8] thereby favouring structural possibility B.

TABLE 2

¹H NMR SPECTRA OF COMPLEXES (IIIa) AND (IIIb) IN LIQ. SO₂ + 1 drop HSO₃F ^a

Compound	Temp. (°C) ^b	Chemical shifts (1, ppm)
IIIa	+ 10	2-3m (10H), 33.4s (1H)
IIIa	-10	2-3m (10H), 33.6s (1H)
IIIa	-4 0	2-3m (10H), 33.8s (1H)
IIIa	60	2-3m (10H), 33.9s (1H)
шь	0	2-3m (5H), 6.3s (3H), 32.8s (1H)
Шр	-20	2-3m (5H), 6.3s (3H), 32.8s (1H)
ПЪ	60	2-3m (5H), 6.3s (3H), 32.8s (1H)

a m = multiplet, s = singlet; relative intensities in parentheses. $b \pm 0.2$ °C.

Complexes Ia and Ib also undergo protonation in strong acid (see Scheme 1) to yield the hydrido cations [HRu₄(CO)₁₂(RC₂R')]⁺. The hydrido ligand was detected from the ¹H NMR spectrum (Table 2) and clearly must span a Ru—Ru edge in the cluster, although facile migration of H ligands from one polyhedral edge to another is commonly observed [9-11] for organometallic complexes of this type.

Hydrogenation of $Ru_4(CO)_{12}PhC_2Ph$ in n-heptane under reflux (15 min) gives an almost quantitative yield of $H_4Ru_4(CO)_{12}$ and trans-stilbene. The mechanism of this hydrogenation will be discussed in a subsequent paper.

We thank the SRC for financial support to K.T.S. and Johnson Matthey and Co. Ltd., for their generous loan of ruthenium trichloride.

References

- 1 A.J. Canty, B.F.G. Johnson and J. Lewis, J. Organometal. Chem., 43 (1972) C35.
- 2 A.J. Canty, A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Chem. Soc. Dalton, (1973) 2056.
- 3 L.F. Dahl and D.L. Smith, J. Amer. Chem. Soc., 84 (1962) 2450 and ref. therein.
- 4 R. Mason and K.M. Thomas, J. Organometal. Chem., 43 (1972) C39.
- 5 For a comprehensive review of this work see I. Wender and P. Pino, Organic Syntheses via Metal Carbonyl, Interscience, 1967, p.129.
- 6 W.A. Jackson, B.F.G. Johnson, J. Kelland, J. Lewis and K.T. Schorpp, J. Organometal. Chem., 88 (1975) C17.
- 7 G. Cetini, G. Gambino, E. Sappa and M. Valle, J. Organometal. Chem., 17 (1969) 437.
- 8 C.R. Eady, B.F.G. Johnson and J. Lewis, unpublished observations.
- 9 S.A.R. Knox and H.D. Kaesz, J. Amer. Chem. Soc., 93 (1971) 4594.
- 10 A.J. Deeming and M. Underhill, J. Chem. Soc. Dalton, (1974) 1415.
- 11 A.J. Deeming, B.F.G. Johnson and J. Lewis, J. Chem. Soc., (1970) 2967.